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Abstract

A new passmethod for a sector dipole in Accelerator Toolbox is documented in this
note. This passmethod implements the 4th-order symplectic integration through the
curvilinear coordinate system in the sector dipole to higher order correctly and includes
the fringe field effect to the second order.

1 Limitations of the existing dipole passmethods in AT

In Accelerator Toolbox (AT) [1], every accelerator element is represented by the correspond-
ing passmethod which describes how the 6-dimensional phase space coordinate vector of a
particle is mapped from the entrance face of the element to its exit face. The passmethod
for dipole magnets is very important because dipoles account for a considerable fraction of
the circumference for any circular accelerator. There were three dipole passmethods in AT,
BendLinearPass,BndMPoleSymplectic4Pass and BndMPoleSymplectic4RadPass. BendLin-
earPass uses a linear model that describes the dipole as a transfer matrix plus chromatic
second order terms. BndMPoleSymplectic4Pass uses 4th-order symplectic integration to pass
the phase space vectors through the dipole body. BndMPoleSymplectic4RadPass is differ-
ent from BndMPoleSymplectic4Pass by only adding radiation energy loss in the integration.
All three passmethods include fringe field effects to the first order (edge focusing). Clearly
BndMPoleSymplectic4Pass is the main representation of dipoles in AT.

However, some limitations of this passmethod exist. First of all, as pointed out above,
the second order effects of the fringe fields are not included. This has significant impact
for machines like SPEAR3 which uses rectangular dipoles whose entrance and exit angles
are nonzero. Secondly, this passmethod does not account for the intrinsic nonlinear effects
of a gradient sector dipole. If one derives the second order transport map of such a dipole
in AT with the passmethod, one finds that the only nonzero elements of the map are the
ones associated with energy errors. For example, the only nonzero elements that affect the
x coordinate are found to be T116,T126 and T166

1 The geometric elements, such as T111,T112,
are all zeros, in contradiction to theoretic analysis [3, 4] and results of the MAD program [5].

1Note that we adopt the more universal convention with the 6th coordinate for δ when discussing the
second order transport maps. This is different from AT, where the 5th coordinate is for δ. Also symmetry
Tlmn = Tlnm is assumed, where l, m, n = 1, 2, · · · , 6 and m ̸= n.

1



Causes of the second limitation have been discovered by looking into the source code of
this passmethod. Symplectic integration is carried out as described in Ref. [6]. Every step
through the dipole is divided into three thin kicks and four drift spaces with lengths and
positions prescribed relative to the length of the step. The kicks are given by

∆px = Lk(−By/Bρ+ hδ − h2x), (1)

∆py = LkBx/Bρ, (2)

∆z = Lkhx, (3)

where Lk is the field length the kick accounts for, h = 1/ρ the curvature and magnetic fields
Bx and By are based on the expansion form

(By + iBx) = Bρ
∑

n=0

(ian + bn)(x + iy)n, (4)

where coefficients an and bn are from PolynomA,PolynomB (b0 = h, but it should be set to
zero in PolynomB). Note that in AT, δ is the 5th coordinate (z the 6th) and consequently
the z variable has an opposite sign to the MAD convention. We use the AT convention
through out this note.

On the drift spaces between the thin kicks, the change of coordinates are

∆x = Ldpx/(1 + δ), (5)

∆y = Ldpy/(1 + δ), (6)

∆z = Ld(p
2

x + p2

y)/2(1 + δ), (7)

where Ld is the drift space length.
The above treatment is typical in tracking codes in the early days. However, it is a

simplification that is accurate only to the first order. The loss of accuracy comes from two
aspects, both associated with the omission of the curvilinear coordinate system that is used
in the dipole body. First, the multipole field expansion used in the thin kick calculation is
valid only on a straight geometry (i.e., Cartesian coordinates). Therefore, Bx and By don’t
represent magnetic fields seen by particles on the curved trajectory. By taking special care
of b0 = h in Eq. (1), the linear transfer matrix is obtained correctly. But all higher order
effects that come with the curved geometry are lost. Second, the above mapping of drift
spaces is also valid only for a straight geometry, not the curvilinear coordinate system.

2 Symplectic integration for the dipole body

The symplectic integration may be derived following the Hamiltonian in the curvilinear
coordinate system which can be found in Ref. [3]. By neglecting the difference between δ
and pt (which amounts for setting βs = 1) and assuming the magnetic field is derived solely
from the longitudinal component, As(x, y, s), of the vector potential (i.e., Ax = Ay = 0), the
Hamiltonian is written

H = 1 + δ − (1 + hx)
As

Bρ
− (1 + hx)

√

(1 + δ)2 − p2
x − p2

y. (8)
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For a sector dipole with mid-plane symmetry whose magnetic field is Bx(y = 0) = Bs(y =
0) = 0 and

By(x, 0, s) = B0 + B1x + B2

x2

2
+ B3

x3

6
+ · · · ,

the vector potential is Ax = Ay = 0 and [3]

As = −B0

(

x −
hx2

2(1 + hx)

)

− B1

(

1

2
(x2 − y2) −

h

6
x3 +

h2

24
(4x4 − y4) + · · ·

)

−B2

(

1

6
(x3 − 3xy2) −

h

24
(x4 − y4) + · · ·

)

− B3

(

1

24
(x4 − 6x2y2 + y4) + · · ·

)

+ · · · . (9)

The Hamiltonian in Eq. (8) can be directly split into two parts for symplectic integration
(see Appendix A). Instead, we will first expand the last term and keep terms up to third
order to get

H = −(1 + hx)
As

Bρ
− (1 + δ)hx + (1 + hx)

p2
x + p2

y

2(1 + δ)
, (10)

which can be split into two parts,

H = H1 + H2, (11)

H1 = (1 + hx)
p2

x + p2
y

2(1 + δ)
, (12)

H2 = −(1 + hx)
As

Bρ
− (1 + δ)hx. (13)

Here the way to split the Hamiltonian is basically the same as BndMPoleSymplectic4Pass.
The Hamiltonian H1 is a generalized drift space in which a reference particle follows the
curved reference trajectory. Its analytic solution can be found. Since H1 is itself an approx-
imation, we only need to keep the solution to the corresponding order, which is

x2 = x +
1 + hx

1 + δ
pxLd +

hL2
d

4(1 + δ2)
(p2

x − p2

y), (14)

px2 = px −
hLd

2(1 + δ)
(p2

x + p2

y), (15)

y2 = y +
1 + hx

1 + δ
pyLd +

hL2
d

2(1 + δ)2
pxpy, (16)

z2 = z +
1 + hx

2(1 + δ)2
(p2

x + p2

y)Ld, (17)

where subscript “2” indicates values at the exit face of the drift element, Ld is the arc length
of the reference trajectory in the drift space, all phase space coordinates on the right hand
side are values at the entrance face, and py and δ are unchanged. The Hamiltonian H1 to a
higher order and its solution can also be obtained (see Appendix B).
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The solution of H2 up to the octupole component, corresponding to terms explicitly given
in Eq. (9), is

∆px/Lk = −(K1 + h2)x − K2(x
2 − y2) − K3(x

3 − 2xy2)

−h
(

K1(x
2 −

1

2
y2) + K2(x

3 −
4

3
xy2)

)

(18)

∆py/Lk = K1y + 2K2xy + K3(2x
2y − y3) + h

(

K1xy +
4

3
K2x

2y +
1

6
(hK1 − 2K2)y

3
)

,(19)

∆z/Lk = hx, (20)

where terms in the last brackets of Eqs. (18–19) are the curvature effect not accounted for by
the existing AT passmethod. Higher order components are included in the implementation
of the new passmethod. But their corresponding curvature effects are neglected.

Combining the solutions of H1 and H2 with the technique given in Ref. [6], we obtain a
fourth-order symplectic integrator for the dipole body.

3 Fringe field effect to the second order

Second order transport maps for fringe fields have been derived by Brown [8] and Helm [7]
and can be found in Ref. [2, 3, 4]. The new AT passmethod follows the formulae given in
Ref. [3] except some misprints are corrected. These formulae are reproduced below. Let the
entrance and exit angles be ψ1 and ψ2 respectively, and the curvature of the entrance and
exit faces be H1 = 1/R1 and H2 = 1/R2 respectively. If we consider the finite extent of the
fringe field (i.e., a soft fringe field model), the vertical focusing angle is defined to be

ψ̄i = ψi − hgIi(1 + sin2 ψi) secψi, i = 1, 2 (21)

where g is the full gap of the dipole magnet and Ii are the fringe field integrals evaluated at
the corresponding faces. The second order map at the entrance face is

T111 = T234 = T414 = −T212 = −T313 = −
h

2
tan2 ψ1, (22)

T133 = −T423 =
h

2
sec2 ψ1, (23)

T211 = −T413 =
h

2R1

sec3 ψ1 + K1 tanψ1, (24)

T233 = −
h

2R1

sec3 ψ1 − K1 tanψ1 +
h2

2
tanψ1(tan2 ψ̄1 + sec2 ψ1), (25)

and at the exit face

T111 = T234 = T414 = −T212 = −T313 =
h

2
tan2 ψ2, (26)

T133 = −T423 = −
h

2
sec2 ψ2, (27)

T211 =
h

2R2

sec3 ψ2 + K1 tanψ2 −
h2

2
tan3 ψ2, (28)
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T233 = −
h

2R2

sec3 ψ2 − K1 tanψ2 −
h2

2
tanψ2 tan2 ψ̄2, (29)

T413 = −
h

2R2

sec3 ψ2 − K1 tanψ2 +
h2

2
tanψ2 sec2 ψ2, (30)

with all other elements being zero. The above formulae produce exactly the same result as
the MAD program as described in the next section.

4 The new passmethod and its validation

The new passmethod is modified from the existing code and is renamed BndMPoleSymplec-
tic4E2Pass with “E2” added to indicate that it includes edge effects to the second order. It
now ignores the element field PolynomA and accepts two new optional fields, H1 and H2,
which represent the curvatures of the entrance and exit pole faces, respectively.

Results of the new AT passmethod are compared to that of the MAD program for the
following cases to validate the code.

1. A gradient sector dipole with L = 1.5048 m, θ = π/17,K1 = −0.3154 m−2.

2. The above gradient dipole with hard edge fringe fields, ψ1 = ψ2 = π/34.

3. The above gradient dipole with soft edge fringe fields, ψ1 = ψ2 = π/34, I1 = I2 = 0.6
and g = 0.034 m.

4. The above gradient dipole with soft edge fringe fields, plus curved pole profiles at both
faces with R1 = R2 = 10 m.

5. The gradient dipole with soft edge fringe fields and pole curvature, plus additional
body sextupole component with K2 = 4.0 m−3 (MAD convention).

With NumIntSteps set to 20, the differences of corresponding elements of the transfer matrix
and the second order transport map between the new AT passmethod and MAD are below
1.5 × 10−6 in SI units for cases 1–4. For case 5, NumIntSteps needs to be 50 to reach the
same level.

The AT passmethods are also compared to MAD and Elegant [9] for the SPEAR3 achro-
matic lattice. Table 1 shows horizontal and vertical chromaticities and the second order
momentum compaction factor for the existing passmethod BndMPoleSymplectic4Pass (“AT
old”), the new passmethod BndMPoleSymplectic4E2Pass (“AT new”), MAD and Elegant.
The field NumIntSteps is set to 20. Setting it to 50 doesn’t change the result much. The
new AT passmethod clearly agrees with MAD and Elegant while the old one does not do as
well, especially for the vertical chromaticity.

The passmethod BndMPoleSymplectic4RadPass is also modified to include the changes
described in the previous sections. The corresponding new passmethod is named BndM-
PoleSymplectic4E2RadPass. It is verified with the SPEAR3 dipole model.
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Table 1: Comparison of chromaticities and the second order momentum compaction factor
between AT, MAD and Elegant. NumIntSteps=20 for both AT passmethods.

Model Cx Cy α2

AT old 1.09730 1.214431 -0.0023962
AT new 1.12223 0.197202 -0.0024464
MAD 1.12367 0.196600 −
Elegant 1.12356 0.196566 -0.0024462
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Appendix A: another symplectic integrator

Following Ref. [6], the Hamiltonian Eq. (8) can be split into two parts as

H = H1 + H2, (A-1)

H1 = 1 + δ − (1 + hx)
√

(1 + δ)2 − p2
x − p2

y, (A-2)

H2 = −(1 + hx)
As

Bρ
, (A-3)

where H1 represents a drift space in the curvilinear coordinates and H2 represent a thin kick
since the general momenta are absent from the latter.

The solution of H1 is found to be

x2 = (ρ+ x)
cosφ

cos(φ+ hLd)
− ρ, (A-4)

px2 =
√

(1 + δ)2 − p2
y sin(φ+ hLd), (A-5)

y2 = y + py

(ρ+ x)
√

(1 + δ)2 − p2
y

(cosφ tan(φ+ hLd) − sinφ), (A-6)

z2 = z + (1 + δ)
(ρ+ x)

√

(1 + δ)2 − p2
y

(cosφ tan(φ+ hLd) − sinφ) − Ld, (A-7)

where subscript “2” indicates values at the exit face of the drift element, Ld is the arc length
of the reference trajectory in the drift space, all phase space coordinates on the right hand
side are values at the entrance face, py and δ are unchanged, and

φ = tan−1
px

√

(1 + δ)2 − p2
y

.
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The solution of H2 up to the octupole component, corresponding to terms explicitly given
in Eq. (9), is

∆px/Lk = −h − (K1 + h2)x − K2(x
2 − y2) − K3(x

3 − 2xy2)

−h
(

K1(x
2 −

1

2
y2) + K2(x

3 −
4

3
xy2)

)

(A-8)

∆py/Lk = K1y + 2K2xy + K3(2x
2y − y3) + h

(

K1xy +
4

3
K2x

2y +
1

6
(hK1 − 2K2)y

3
)

.(A-9)

where terms in the last brackets are the curvature effect not included in the existing AT
passmethod.

The 4th-order symplectic integrator for a general sector dipole based on the above scheme
has been implemented. The advantage of this integrator is that it is accurate to high orders.
One issue of this integrator is that a zero vector,[0, 0, 0, 0, 0, 0]′, will not be exactly zero when
it is passed to the exit. For example, it becomes [0.5, 0.8, 0, 0, 0, 0.3]′×10−6 for a sector dipole
with length 1.5048 m, bending angle π/17 and defocusing gradient K1 = −0.3154 m−2 if
the number of integration steps (NumIntSteps) is set to 10. However, this is usually a minor
inconvenience. In particle tracking the “kick” errors to x and x′ affect only the closed orbit,
not the dynamics (transfer matrix and higher order maps). The error to z may accumulate
and cause artificial phase error in tracking. It also cause errors in momentum compaction
factor calculation unless care is taken to subtract the overall shift of z out. However, the
kick errors go down as 1/N4 as N=NumIntSteps goes up. In the example above, the error
becomes [0.5, 0.8, 0, 0, 0, 0.3]′ × 10−10 if N = 100.

The passmethod that implements this scheme is named BndMPoleSymplectic4E2APass
and its radiation counterpart is named BndMPoleSymplectic4E2ARadPass. To deal with
the numerical “kick” error, especially the accumulation of phase error (z variable), one way
is to increase the number of integration steps (the NumIntSteps field). Another remedy
is provided by introducing a new optional field, SyncError, which is a 6-dimensional row
vector obtained by tracking the zero vector through the element when this field is absent
and turning the resulting vector into a row vector. The error vector passed to the code this
way is subtracted from the exiting phase space vectors of particles being tracked. For the
example discussed in the end of section 2, the SyncError field may be set by

BEND.SyncError = [0.5, 0.8, 0, 0, 0, 0.3]*1E-6,

when NumIntSteps is 10. It is advised not to use this trick on BndMPoleSymplectic4E2ARadPass
since the zero vector is not supposed to be mapped to a zero vector when the particles lose
energy in the dipole due to radiation.

Appendix B: Hamiltonian H1 to the fourth order

If we expand the Hamiltonian in Eq. (8) to the fourth order and split it in the same manner,
we get

H1 = (1 + hx)
p2

x + p2
y

2(1 + δ)
+

p2
xp

2
y

4(1 + δ)3
, (B-1)

(B-2)
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while H2 remains the same as Eq. (13). The solution of Eq. (B-1) to the corresponding
order is

x2 = x +
1 + hx

1 + δ
pxLd +

hL2
d

4(1 + δ2)
(p2

x − p2

y) +
1

2(1 + δ2)
xp2

y +
h2L2

d

4(1 + δ2)
x(p2

x − p2

y)

+
Ld

2(1 + δ)3
(1 −

1

3
h2L2

d)pxp
2

y, (B-3)

px2 = px −
hLd

2(1 + δ)
(p2

x + p2

y) +
h2L2

d

4(1 + δ)2
px(p

2

x + p2

y), (B-4)

y2 = y +
1 + hx

1 + δ
pyLd +

(1 + hx)hL2
d

2(1 + δ)2
pxpy +

Ld

2(1 + δ)2
p2

xpy +
h2L3

d

12(1 + δ)3
(p2

x − p2

y)py,

(B-5)

z2 = z +
1 + hx

2(1 + δ)2
(p2

x + p2

y)Ld, (B-6)

with py and δ unchanged.
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