find tunes and damping rates from one map matrix with radiation note that in order to find the damping times, one needs the revolution time T0, then tau1 = T0/chi1, tau2 = T0/chi2, tau3 = T0/chi3 In the case that m66 is symplectic, the damping rates will be all 0. note that we have taken absolute values, assumeing all these quantities are positive. B. Nash 24/07/2014
0001 function [nu,chi]=atTunesAndDampingRatesFromMat(m66) 0002 %find tunes and damping rates from one map matrix with radiation 0003 %note that in order to find the damping times, one needs the revolution 0004 %time T0, then 0005 %tau1 = T0/chi1, tau2 = T0/chi2, tau3 = T0/chi3 0006 %In the case that m66 is symplectic, the damping rates will be all 0. 0007 %note that we have taken absolute values, assumeing all these quantities 0008 %are positive. 0009 %B. Nash 24/07/2014 0010 0011 aa=amat(m66); 0012 0013 Rmat=aa\m66*aa; 0014 0015 R1=Rmat([1 2],[1 2]); 0016 R2=Rmat([3 4],[3 4]); 0017 R3=Rmat([5 6],[5 6]); 0018 0019 %ev=eigs(m66); 0020 0021 ev1=eigs(R1); 0022 evlog1=log(ev1(1)); 0023 0024 ev2=eigs(R2); 0025 evlog2=log(ev2(1)); 0026 0027 ev3=eigs(R3); 0028 evlog3=log(ev3(1)); 0029 0030 %evlog123=log(ev([1,3,5])); 0031 0032 nu(1)=abs(imag(evlog1)/(2*pi)); 0033 chi(1)=abs(real(evlog1)); 0034 0035 nu(2)=abs(imag(evlog2)/(2*pi)); 0036 chi(2)=abs(real(evlog2)); 0037 0038 nu(3)=abs(imag(evlog3)/(2*pi)); 0039 chi(3)=abs(real(evlog3));