Home > atphysics > Orbit > findsyncorbit.m

findsyncorbit

PURPOSE ^

FINDSYNCORBIT finds closed orbit, synchronous with the RF cavity

SYNOPSIS ^

function [orbit, fixedpoint] = findsyncorbit(RING,dCT,varargin)

DESCRIPTION ^

FINDSYNCORBIT finds closed orbit, synchronous with the RF cavity
 and momentum deviation dP (first 5 components of the phase space vector)
 by numerically solving  for a fixed point
 of the one turn map M calculated with LINEPASS

       (X, PX, Y, PY, dP2, CT2 ) = M (X, PX, Y, PY, dP1, CT1)

    under constraints CT2 - CT1 =  dCT = C(1/Frev - 1/Frev0) and dP2 = dP1 , where
    Frev0 = Frf0/HarmNumber is the design revolution frequency
    Frev  = (Frf0 + dFrf)/HarmNumber is the imposed revolution frequency

 IMPORTANT!!!  FINDSYNCORBIT imposes a constraint (CT2 - CT1) and
    dP2 = dP1 but no constraint on the value of dP1, dP2
    The algorithm assumes time-independent fixed-momentum ring
    to reduce the dimensionality of the problem.
    To impose this artificial constraint in FINDSYNCORBIT
    PassMethod used for any element SHOULD NOT
    1. change the longitudinal momentum dP (cavities , magnets with radiation)
    2. have any time dependence (localized impedance, fast kickers etc).


 FINDSYNCORBIT(RING,dCT) is 5x1 vector - fixed point at the
        entrance of the 1-st element of the RING (x,px,y,py,dP)

 FINDSYNCORBIT(RING,dCT,REFPTS) is 5-by-Length(REFPTS)
     array of column vectors - fixed points (x,px,y,py,dP)
     at the entrance of each element indexed in REFPTS array.
     REFPTS is an array of increasing indexes that  select elements
     from the range 1 to length(RING)+1.
     See further explanation of REFPTS in the 'help' for FINDSPOS

 FINDSYNCORBIT(RING,dCT,REFPTS,GUESS) - same as above but the search
     for the fixed point starts at the initial condition GUESS
     Otherwise the search starts from [0 0 0 0 0 0]'.
     GUESS must be a 6-by-1 vector;

 [ORBIT, FIXEDPOINT] = FINDSYNCORBIT( ... )
     The optional second return parameter is
     a 6-by-1 vector of initial conditions
     on the close orbit at the entrance to the RING.

 See also FINDORBIT4, FINDORBIT6.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [orbit, fixedpoint] = findsyncorbit(RING,dCT,varargin)
0002 %FINDSYNCORBIT finds closed orbit, synchronous with the RF cavity
0003 % and momentum deviation dP (first 5 components of the phase space vector)
0004 % by numerically solving  for a fixed point
0005 % of the one turn map M calculated with LINEPASS
0006 %
0007 %       (X, PX, Y, PY, dP2, CT2 ) = M (X, PX, Y, PY, dP1, CT1)
0008 %
0009 %    under constraints CT2 - CT1 =  dCT = C(1/Frev - 1/Frev0) and dP2 = dP1 , where
0010 %    Frev0 = Frf0/HarmNumber is the design revolution frequency
0011 %    Frev  = (Frf0 + dFrf)/HarmNumber is the imposed revolution frequency
0012 %
0013 % IMPORTANT!!!  FINDSYNCORBIT imposes a constraint (CT2 - CT1) and
0014 %    dP2 = dP1 but no constraint on the value of dP1, dP2
0015 %    The algorithm assumes time-independent fixed-momentum ring
0016 %    to reduce the dimensionality of the problem.
0017 %    To impose this artificial constraint in FINDSYNCORBIT
0018 %    PassMethod used for any element SHOULD NOT
0019 %    1. change the longitudinal momentum dP (cavities , magnets with radiation)
0020 %    2. have any time dependence (localized impedance, fast kickers etc).
0021 %
0022 %
0023 % FINDSYNCORBIT(RING,dCT) is 5x1 vector - fixed point at the
0024 %        entrance of the 1-st element of the RING (x,px,y,py,dP)
0025 %
0026 % FINDSYNCORBIT(RING,dCT,REFPTS) is 5-by-Length(REFPTS)
0027 %     array of column vectors - fixed points (x,px,y,py,dP)
0028 %     at the entrance of each element indexed in REFPTS array.
0029 %     REFPTS is an array of increasing indexes that  select elements
0030 %     from the range 1 to length(RING)+1.
0031 %     See further explanation of REFPTS in the 'help' for FINDSPOS
0032 %
0033 % FINDSYNCORBIT(RING,dCT,REFPTS,GUESS) - same as above but the search
0034 %     for the fixed point starts at the initial condition GUESS
0035 %     Otherwise the search starts from [0 0 0 0 0 0]'.
0036 %     GUESS must be a 6-by-1 vector;
0037 %
0038 % [ORBIT, FIXEDPOINT] = FINDSYNCORBIT( ... )
0039 %     The optional second return parameter is
0040 %     a 6-by-1 vector of initial conditions
0041 %     on the close orbit at the entrance to the RING.
0042 %
0043 % See also FINDORBIT4, FINDORBIT6.
0044 %
0045 if ~iscell(RING)
0046     error('First argument must be a cell array');
0047 end
0048 
0049 d = 1e-6;       % step size for numerical differentiation
0050 dps = 1e-12;    % convergence threshold
0051 %dps=eps;       % convergence threshold
0052 max_iterations = 20;
0053 
0054 if nargin >= 4    % Check if guess argument was supplied
0055     if isnumeric(varargin{2}) && all(eq(size(varargin{2}),[6,1]))
0056         Ri=varargin{2};
0057     else
0058         error('The last argument GUESS must be a 6-by-1 vector');
0059     end
0060 else
0061     Ri = zeros(6,1);
0062 end
0063 
0064 D5 = [d*eye(5) zeros(5,1); zeros(1,6)];
0065 %D5 = [0.5*d*eye(5) -0.5*d*eye(5) zeros(5,1); zeros(1,11)];
0066 theta5 = [0 0 0 0  dCT]';
0067 
0068 args={};
0069 change=Inf;
0070 itercount = 0;
0071 while (change > dps) && (itercount < max_iterations)
0072     RMATi= Ri(:,ones(1,6)) + D5;
0073     %RMATi= Ri(:,ones(1,11)) + D5;
0074     RMATf = linepass(RING,RMATi,args{:});
0075     Rf = RMATf(:,end);
0076     % compute the transverse part of the Jacobian
0077     J5 =  (RMATf([1:4,6],1:5)-RMATf([1:4,6],6*ones(1,5)))/d;
0078     %J5 =  (RMATf([1:4,6],1:5)-RMATf([1:4,6],6:10))/d;
0079     Ri_next = Ri +  [(diag([1 1 1 1 0]) - J5)\(Rf([1:4,6])-[Ri(1:4);0]-theta5);0];
0080     change = norm(Ri_next - Ri);
0081     Ri = Ri_next;
0082     itercount = itercount+1;
0083     args={'KeepLattice'};
0084 end
0085 
0086 if itercount == max_iterations
0087     warning('Maximum number of iterations reached. Possible non-convergence')
0088 end
0089 
0090 if (nargin<3) || (isscalar(varargin{1}) && (varargin{1}==(length(RING)+1)))
0091     % return only the fixed point at the entrance of RING{1}
0092     orbit=Ri(1:5,1);
0093 else            % 3-rd input argument - vector of reference points along the Ring
0094     % is supplied - return orbit
0095     orb6 = linepass(RING,Ri,varargin{1},'KeepLattice');
0096     orbit = orb6(1:5,:);
0097 end
0098 
0099 if nargout==2
0100     fixedpoint=Ri;
0101 end

Generated on Thu 24-Aug-2017 18:47:33 by m2html © 2005