Coloumb scattering and residual gas Bremsstrahlung Cross sections are computed to evaluate the lifetime contribution of the vacuum system specified by Zperc (vector of percentages, index=atomic Number),and P[nTor] the pressure profile along the ring b is the dimension of the vacuum chamber along the lattice (x,y). DEE is the Energy acceptance of the ring (longitudinal aperture) length(b)=length(DEE)=length(P)=length(ring) Assumed temperature of 293 K and interacion with diatomic gas tvac returned in hours created 20-5-2013
0001 function [tvac,sigmacoulomb,sigmabremsstrahlung]=... 0002 VacLifetimeResidualGass(ring,DEE,Zperc,P,b) 0003 % Coloumb scattering and residual gas Bremsstrahlung Cross sections are 0004 % computed to evaluate the lifetime contribution of the vacuum system 0005 % specified by Zperc (vector of percentages, index=atomic Number),and P[nTor] the 0006 % pressure profile along the ring 0007 % b is the dimension of the vacuum chamber along the lattice (x,y). 0008 % DEE is the Energy acceptance of the ring (longitudinal aperture) 0009 % 0010 % length(b)=length(DEE)=length(P)=length(ring) 0011 % 0012 % Assumed temperature of 293 K and interacion with diatomic gas 0013 % 0014 % tvac returned in hours 0015 % 0016 % created 20-5-2013 0017 0018 r0=2.8179403267e-15;%[m] classical electron radius 0019 c=299792458;% m/s speed of ligth 0020 me=0.510998910e6;% eV/c^2 electron mass 0021 alpha=1/137.035999084; % fine structure constant 0022 kboltz=1.3806488e-23 ; %m^2 kg s^-2 K^-1 Boltzman constant 0023 T=293;%K 0024 0025 % particle energy 0026 E0=ring{1}.Energy;% eV/c electron beam energy 0027 0028 l=atlinopt(ring,0,1:length(ring)); 0029 betx=arrayfun(@(x)x.beta(1),l)'; 0030 bety=arrayfun(@(x)x.beta(2),l)'; 0031 0032 Z=1:length(Zperc); 0033 0034 sgcv=max(bety).*bety./b(:,2).^2; 0035 0036 sgch=max(betx).*betx./b(:,1).^2; 0037 0038 % test parameters, with this it should return 0.13 barn 0039 % sgch=0; 0040 % sgcv=30*15/0.03^2; 0041 % E0=5e9; 0042 0043 sgc=sgch+sgcv; % this is CORRECT ???? 0044 0045 ZavC=sum(Z.^2.*Zperc);% this is CORRECT ???? 0046 0047 sigmacoulombLocal=2*pi.*r0.^2.*ZavC.*sgc.*(me/E0).^2;% sum contribution for various atoms 0048 0049 sigmacoulomb=mean(sigmacoulombLocal); 0050 0051 sigmacoulomb=sigmacoulomb*10^4*10^24;% cross section from m^2 to barn, 1 barn=10^-24 cm^2 0052 0053 0054 % DEE is along the lattice. average of sigma along the lattice 0055 Zav=sum(Z.*(Z+1).*log(183./Z.^(1/3)).*Zperc); 0056 0057 sigmabremsstrahlungLocal=16*alpha*r0^2/3.*Zav.*(log(1./DEE)-5/8); 0058 0059 sigmabremsstrahlung=mean(sigmabremsstrahlungLocal); 0060 0061 sigmabremsstrahlung=sigmabremsstrahlung*10^4*10^24;% cross section from m^2 to barn, 1 barn=10^-24 cm^2 0062 size(sigmabremsstrahlungLocal) 0063 size(sigmacoulombLocal) 0064 0065 sigma=sigmabremsstrahlungLocal*10^4*10^24+sigmacoulombLocal*10^4*10^24; %in barn 0066 0067 % n_mol=P./kboltz/T;%[m^-3] molar density of residual gas along the ring 0068 0069 invtvac=P.*sigma./(0.474*T); 0070 0071 tvac=length(sigma)/sum(invtvac);% h 0072 0073